Euclid's algorithm is a way to find the greatest common divisor (GCD) of two integers. Here's the core idea. Given \(a \) and \(b \), with \(a > b \), use division with remainder to write

\[
\begin{align*}
a &= bq + r, \quad 0 \leq r < b \tag{1}
\end{align*}
\]

or equivalently

\[
\begin{align*}
a - bq &= r \tag{2}
\end{align*}
\]

From (2), you can see that the GCD of \(a \) and \(b \) must also divide \(r \). From (1), you can see that the GCD of \(b \) and \(r \) must also divide \(a \). Putting all that together, the GCD of \(a \) and \(b \) must also be the GCD of \(b \) and \(r \). Since \(r \) is less than \(b \), we've narrowed down the possibilities for the GCD considerably. Now all you have to do is divide \(b \) by \(r \), and keep repeating this process until you hit a remainder of zero. The last non-zero remainder is the GCD you're looking for.

Here's an example. Let's find the GCD of 288 and 120. First,

\[
\begin{align*}
288 &= 120 \times 2 + 48
\end{align*}
\]

So \(\text{gcd}(288, 120) = \text{gcd}(120, 48) \). Repeat:

\[
\begin{align*}
120 &= 48 \times 2 + 24 \\
48 &= 24 \times 2
\end{align*}
\]

So \(\text{gcd}(288, 120) = \text{gcd}(120, 48) = \text{gcd}(48, 24) = 24 \). And sure enough, 288 = 24 \times 12 and 120 = 24 \times 5.

1. Use Euclid’s algorithm to find \(\text{gcd}(720, 520) \).

 \[
 40
 \]

 Interestingly, the steps of Euclid’s algorithm allow you to find integers \(m \) and \(n \) that solve

\[
\begin{align*}
am + bn &= \text{gcd}(a, b) \tag{3}
\end{align*}
\]

Here's how it works for \(a = 288 \) and \(b = 120 \). Go back through the calculations and isolate the remainder in each step:

\[
\begin{align*}
288 - 120 \times 2 &= 48 \\
120 - 48 \times 2 &= 24 \tag{4}
\end{align*}
\]
Use the first step to replace the 48 in the second step

\[120 - (288 - 120 \times 2) \times 2 = 24 \]

and simplify to get

\[120 \times 5 + 288 \times (-2) = 24 \]

Here's another example. Let's compute gcd(200, 29) = 1.

\[
\begin{align*}
200 &= 29 \times 6 + 26 \\
29 &= 26 \times 1 + 3 \\
26 &= 3 \times 8 + 2 \\
3 &= 2 \times 1 + 1 \\
2 &= 1 \times 2
\end{align*}
\]

Now we go bottom up:

\[
\begin{align*}
3 - 2 \times 1 &= 1 \\
3 - (26 - 3 \times 8) \times 1 &= 26 \times (-1) + 3 \times 9 = 1 \\
26 \times (-1) + (29 - 26 \times 1) \times 9 &= 29 \times 9 + 26 \times (-10) = 1 \\
29 \times 9 + (200 - 29 \times 6) \times (-10) &= 200 \times (-10) + 29 \times 69 = 1
\end{align*}
\]

So a solution in integers of 200m + 29n = 1 is m = -10, n = 69.

2. Find integers \(m\) and \(n\) such that \(720m + 520n = \text{gcd}(720, 520)\).

\[
m = -5, \ n = 7
\]

3. Find integers \(m\) and \(n\) such that \(320m + 119n = 1\).

\[
m = 45, \ n = -121
\]

4. Find an integer \(0 \leq k < 320\) such that \(119k \equiv 1 \pmod{320}\).

\[
k = 199
\]